Multiresolution community detection for megascale networks by information-based replica correlations.

نویسندگان

  • Peter Ronhovde
  • Zohar Nussinov
چکیده

We use a Potts model community detection algorithm to accurately and quantitatively evaluate the hierarchical or multiresolution structure of a graph. Our multiresolution algorithm calculates correlations among multiple copies ("replicas") of the same graph over a range of resolutions. Significant multiresolution structures are identified by strongly correlated replicas. The average normalized mutual information, the variation in information, and other measures, in principle, give a quantitative estimate of the "best" resolutions and indicate the relative strength of the structures in the graph. Because the method is based on information comparisons, it can, in principle, be used with any community detection model that can examine multiple resolutions. Our approach may be extended to other optimization problems. As a local measure, our Potts model avoids the "resolution limit" that affects other popular models. With this model, our community detection algorithm has an accuracy that ranks among the best of currently available methods. Using it, we can examine graphs over 40 x10;{6} nodes and more than 1 x10;{9} edges. We further report that the multiresolution variant of our algorithm can solve systems of at least 200 000 nodes and 10 x 10;{6} edges on a single processor with exceptionally high accuracy. For typical cases, we find a superlinear scaling O(L1.3) for community detection and O(L1.3 log N) for the multiresolution algorithm, where L is the number of edges and N is the number of nodes in the system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Replica Inference Approach to Unsupervised Multi-Scale Image Segmentation

We apply a replica inference based Potts model method to unsupervised image segmentation on multiple scales. This approach was inspired by the statistical mechanics problem of “community detection” and its phase diagram. Specifically, the problem is cast as identifying tightly bound clusters (“communities” or “solutes”) against a background or “solvent”. Within our multiresolution approach, we ...

متن کامل

Community detection for fluorescent lifetime microscopy image segmentation

Multiresolution community detection (CD) method has been suggested in a recent work as an efficient method for performing unsupervised segmentation of fluorescence lifetime (FLT) images of live cell images containing fluorescent molecular probes. In the current paper, we further explore this method in FLT images of ex vivo tissue slices. The image processing problem is framed as identifying clu...

متن کامل

Design an Efficient Community-based Message Forwarding Method in Mobile Social Networks

Mobile social networks (MSNs) are a special type of Delay tolerant networks (DTNs) in which mobile devices communicate opportunistically to each other. One of the most challenging issues in Mobile Social Networks (MSNs) is to design an efficient message forwarding scheme that has a high performance in terms of delivery ratio, latency and communication cost. There are two different approaches fo...

متن کامل

Overlapping Community Detection in Social Networks Based on Stochastic Simulation

Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...

متن کامل

An Optimized Firefly Algorithm based on Cellular Learning Automata for Community Detection in Social Networks

The structure of the community is one of the important features of social networks. A community is a sub graph which nodes have a lot of connections to nodes of inside the community and have very few connections to nodes of outside the community. The objective of community detection is to separate groups or communities that are linked more closely. In fact, community detection is the clustering...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 80 1 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2009